Copied to
clipboard

G = C42.70D6order 192 = 26·3

70th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.70D6, C4⋊C4.76D6, (C2×C12).85D4, C42.C22S3, C4⋊D12.7C2, C6.D841C2, C12.71(C4○D4), C2.22(D4⋊D6), C6.123(C8⋊C22), (C2×C12).385C23, C42.S311C2, (C4×C12).115C22, C4.13(Q83S3), C6.55(C4.4D4), C2.8(C12.23D4), (C2×D12).103C22, C33(C42.29C22), (C2×C6).516(C2×D4), (C3×C42.C2)⋊2C2, (C2×C4).67(C3⋊D4), (C2×C3⋊C8).127C22, (C3×C4⋊C4).123C22, (C2×C4).483(C22×S3), C22.189(C2×C3⋊D4), SmallGroup(192,626)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C42.70D6
C1C3C6C12C2×C12C2×D12C4⋊D12 — C42.70D6
C3C6C2×C12 — C42.70D6
C1C22C42C42.C2

Generators and relations for C42.70D6
 G = < a,b,c,d | a4=b4=1, c6=a2, d2=a2b-1, ab=ba, cac-1=a-1b2, dad-1=ab2, cbc-1=b-1, bd=db, dcd-1=b-1c5 >

Subgroups: 416 in 110 conjugacy classes, 39 normal (15 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, C2×C4, D4, C23, C12, C12, D6, C2×C6, C42, C4⋊C4, C4⋊C4, C2×C8, C2×D4, C3⋊C8, D12, C2×C12, C2×C12, C2×C12, C22×S3, C8⋊C4, D4⋊C4, C42.C2, C41D4, C2×C3⋊C8, C4×C12, C3×C4⋊C4, C3×C4⋊C4, C2×D12, C2×D12, C42.29C22, C42.S3, C6.D8, C4⋊D12, C3×C42.C2, C42.70D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊D4, C22×S3, C4.4D4, C8⋊C22, Q83S3, C2×C3⋊D4, C42.29C22, C12.23D4, D4⋊D6, C42.70D6

Character table of C42.70D6

 class 12A2B2C2D2E34A4B4C4D4E4F6A6B6C8A8B8C8D12A12B12C12D12E12F12G12H12I12J
 size 111124242224488222121212124444448888
ρ1111111111111111111111111111111    trivial
ρ21111-11111-1-11-1111-111-1-1-1-11-11-1-111    linear of order 2
ρ311111111111-1-1111-1-1-1-1111111-1-1-1-1    linear of order 2
ρ41111-11111-1-1-111111-1-11-1-1-11-1111-1-1    linear of order 2
ρ511111-1111-1-11-11111-1-11-1-1-11-11-1-111    linear of order 2
ρ61111-1-11111111111-1-1-1-11111111111    linear of order 2
ρ711111-1111-1-1-11111-111-1-1-1-11-1111-1-1    linear of order 2
ρ81111-1-111111-1-11111111111111-1-1-1-1    linear of order 2
ρ9222200-122-2-2-22-1-1-10000111-11-1-1-111    orthogonal lifted from D6
ρ102222002-2-22-2002220000-22-2-22-20000    orthogonal lifted from D4
ρ11222200-122-2-22-2-1-1-10000111-11-111-1-1    orthogonal lifted from D6
ρ122222002-2-2-220022200002-22-2-2-20000    orthogonal lifted from D4
ρ13222200-1222222-1-1-10000-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ14222200-12222-2-2-1-1-10000-1-1-1-1-1-11111    orthogonal lifted from D6
ρ15222200-1-2-2-2200-1-1-10000-11-1111--3-3--3-3    complex lifted from C3⋊D4
ρ16222200-1-2-22-200-1-1-100001-111-11--3-3-3--3    complex lifted from C3⋊D4
ρ17222200-1-2-2-2200-1-1-10000-11-1111-3--3-3--3    complex lifted from C3⋊D4
ρ18222200-1-2-22-200-1-1-100001-111-11-3--3--3-3    complex lifted from C3⋊D4
ρ1922-2-20022-20000-2-22-2i002i00020-20000    complex lifted from C4○D4
ρ2022-2-20022-20000-2-222i00-2i00020-20000    complex lifted from C4○D4
ρ2122-2-2002-220000-2-2202i-2i0000-2020000    complex lifted from C4○D4
ρ2222-2-2002-220000-2-220-2i2i0000-2020000    complex lifted from C4○D4
ρ2344-4-400-24-4000022-20000000-2020000    orthogonal lifted from Q83S3, Schur index 2
ρ244-4-440040000004-4-400000000000000    orthogonal lifted from C8⋊C22
ρ254-44-4004000000-44-400000000000000    orthogonal lifted from C8⋊C22
ρ2644-4-400-2-44000022-2000000020-20000    orthogonal lifted from Q83S3, Schur index 2
ρ274-44-400-20000002-220000230-230000000    orthogonal lifted from D4⋊D6
ρ284-44-400-20000002-220000-230230000000    orthogonal lifted from D4⋊D6
ρ294-4-4400-2000000-222000002300-2300000    orthogonal lifted from D4⋊D6
ρ304-4-4400-2000000-22200000-23002300000    orthogonal lifted from D4⋊D6

Smallest permutation representation of C42.70D6
On 96 points
Generators in S96
(1 44 7 38)(2 71 8 65)(3 46 9 40)(4 61 10 67)(5 48 11 42)(6 63 12 69)(13 33 19 27)(14 57 20 51)(15 35 21 29)(16 59 22 53)(17 25 23 31)(18 49 24 55)(26 77 32 83)(28 79 34 73)(30 81 36 75)(37 95 43 89)(39 85 45 91)(41 87 47 93)(50 78 56 84)(52 80 58 74)(54 82 60 76)(62 94 68 88)(64 96 70 90)(66 86 72 92)
(1 83 90 24)(2 13 91 84)(3 73 92 14)(4 15 93 74)(5 75 94 16)(6 17 95 76)(7 77 96 18)(8 19 85 78)(9 79 86 20)(10 21 87 80)(11 81 88 22)(12 23 89 82)(25 43 54 63)(26 64 55 44)(27 45 56 65)(28 66 57 46)(29 47 58 67)(30 68 59 48)(31 37 60 69)(32 70 49 38)(33 39 50 71)(34 72 51 40)(35 41 52 61)(36 62 53 42)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 6 18 82 90 95 77 23)(2 22 78 94 91 81 19 5)(3 4 20 80 92 93 79 21)(7 12 24 76 96 89 83 17)(8 16 84 88 85 75 13 11)(9 10 14 74 86 87 73 15)(25 70 69 26 54 38 37 55)(27 68 71 36 56 48 39 53)(28 52 40 47 57 35 72 67)(29 66 61 34 58 46 41 51)(30 50 42 45 59 33 62 65)(31 64 63 32 60 44 43 49)

G:=sub<Sym(96)| (1,44,7,38)(2,71,8,65)(3,46,9,40)(4,61,10,67)(5,48,11,42)(6,63,12,69)(13,33,19,27)(14,57,20,51)(15,35,21,29)(16,59,22,53)(17,25,23,31)(18,49,24,55)(26,77,32,83)(28,79,34,73)(30,81,36,75)(37,95,43,89)(39,85,45,91)(41,87,47,93)(50,78,56,84)(52,80,58,74)(54,82,60,76)(62,94,68,88)(64,96,70,90)(66,86,72,92), (1,83,90,24)(2,13,91,84)(3,73,92,14)(4,15,93,74)(5,75,94,16)(6,17,95,76)(7,77,96,18)(8,19,85,78)(9,79,86,20)(10,21,87,80)(11,81,88,22)(12,23,89,82)(25,43,54,63)(26,64,55,44)(27,45,56,65)(28,66,57,46)(29,47,58,67)(30,68,59,48)(31,37,60,69)(32,70,49,38)(33,39,50,71)(34,72,51,40)(35,41,52,61)(36,62,53,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,18,82,90,95,77,23)(2,22,78,94,91,81,19,5)(3,4,20,80,92,93,79,21)(7,12,24,76,96,89,83,17)(8,16,84,88,85,75,13,11)(9,10,14,74,86,87,73,15)(25,70,69,26,54,38,37,55)(27,68,71,36,56,48,39,53)(28,52,40,47,57,35,72,67)(29,66,61,34,58,46,41,51)(30,50,42,45,59,33,62,65)(31,64,63,32,60,44,43,49)>;

G:=Group( (1,44,7,38)(2,71,8,65)(3,46,9,40)(4,61,10,67)(5,48,11,42)(6,63,12,69)(13,33,19,27)(14,57,20,51)(15,35,21,29)(16,59,22,53)(17,25,23,31)(18,49,24,55)(26,77,32,83)(28,79,34,73)(30,81,36,75)(37,95,43,89)(39,85,45,91)(41,87,47,93)(50,78,56,84)(52,80,58,74)(54,82,60,76)(62,94,68,88)(64,96,70,90)(66,86,72,92), (1,83,90,24)(2,13,91,84)(3,73,92,14)(4,15,93,74)(5,75,94,16)(6,17,95,76)(7,77,96,18)(8,19,85,78)(9,79,86,20)(10,21,87,80)(11,81,88,22)(12,23,89,82)(25,43,54,63)(26,64,55,44)(27,45,56,65)(28,66,57,46)(29,47,58,67)(30,68,59,48)(31,37,60,69)(32,70,49,38)(33,39,50,71)(34,72,51,40)(35,41,52,61)(36,62,53,42), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,18,82,90,95,77,23)(2,22,78,94,91,81,19,5)(3,4,20,80,92,93,79,21)(7,12,24,76,96,89,83,17)(8,16,84,88,85,75,13,11)(9,10,14,74,86,87,73,15)(25,70,69,26,54,38,37,55)(27,68,71,36,56,48,39,53)(28,52,40,47,57,35,72,67)(29,66,61,34,58,46,41,51)(30,50,42,45,59,33,62,65)(31,64,63,32,60,44,43,49) );

G=PermutationGroup([[(1,44,7,38),(2,71,8,65),(3,46,9,40),(4,61,10,67),(5,48,11,42),(6,63,12,69),(13,33,19,27),(14,57,20,51),(15,35,21,29),(16,59,22,53),(17,25,23,31),(18,49,24,55),(26,77,32,83),(28,79,34,73),(30,81,36,75),(37,95,43,89),(39,85,45,91),(41,87,47,93),(50,78,56,84),(52,80,58,74),(54,82,60,76),(62,94,68,88),(64,96,70,90),(66,86,72,92)], [(1,83,90,24),(2,13,91,84),(3,73,92,14),(4,15,93,74),(5,75,94,16),(6,17,95,76),(7,77,96,18),(8,19,85,78),(9,79,86,20),(10,21,87,80),(11,81,88,22),(12,23,89,82),(25,43,54,63),(26,64,55,44),(27,45,56,65),(28,66,57,46),(29,47,58,67),(30,68,59,48),(31,37,60,69),(32,70,49,38),(33,39,50,71),(34,72,51,40),(35,41,52,61),(36,62,53,42)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,6,18,82,90,95,77,23),(2,22,78,94,91,81,19,5),(3,4,20,80,92,93,79,21),(7,12,24,76,96,89,83,17),(8,16,84,88,85,75,13,11),(9,10,14,74,86,87,73,15),(25,70,69,26,54,38,37,55),(27,68,71,36,56,48,39,53),(28,52,40,47,57,35,72,67),(29,66,61,34,58,46,41,51),(30,50,42,45,59,33,62,65),(31,64,63,32,60,44,43,49)]])

Matrix representation of C42.70D6 in GL8(𝔽73)

474000000
6826000000
00100000
00010000
0000026658
000047088
0000865026
00006565470
,
10000000
01000000
00100000
00010000
00000100
000072000
000000072
00000010
,
270000000
5946000000
000720000
001720000
00000010
00000001
000072000
000007200
,
270000000
027000000
001720000
000720000
00000001
00000010
000072000
00000100

G:=sub<GL(8,GF(73))| [47,68,0,0,0,0,0,0,4,26,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,47,8,65,0,0,0,0,26,0,65,65,0,0,0,0,65,8,0,47,0,0,0,0,8,8,26,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0],[27,59,0,0,0,0,0,0,0,46,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[27,0,0,0,0,0,0,0,0,27,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,72,0,0,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0] >;

C42.70D6 in GAP, Magma, Sage, TeX

C_4^2._{70}D_6
% in TeX

G:=Group("C4^2.70D6");
// GroupNames label

G:=SmallGroup(192,626);
// by ID

G=gap.SmallGroup(192,626);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,254,555,100,1123,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=a^2,d^2=a^2*b^-1,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a*b^2,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=b^-1*c^5>;
// generators/relations

Export

Character table of C42.70D6 in TeX

׿
×
𝔽